Results 000000 Summary O

Functional plasticity of ground beetles can presume the changes in their community composition by forestry treatments

Elek Z.^{1,2}, S. Bérces³, S. Ackov⁴, P. Ódor^{2,5}

¹MTA-ELTE-MTM Ecology Research Group, Eotvos Loránd University, Hungarian Natural History Museum, Budapest, Hungary

²MTA Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary

³Duna-Ipoly National Park Directorate, Budapest, Hungary

⁴University of Sopron, Sopron, Hungary

⁵MTA Centre for Ecological Research, GINOP Sustainable Ecosystem Research Group, Tihany, Hungary

5. European Congress of Conservation Biology, 12-15. June 2018. Jyvaskyla, Finland Questions • Method 000 Results

Summary O

Background

- Ecological consequences of forest management on ground beetles \rightarrow mostly on community responses, the least on functional traits
- Understanding of mechanisms that underline community responses to habitat alternation and ecosystem functioning
- Community structure descriptors based on taxonomic identity $(\mathbf{T}) \rightarrow$ a proxy for biodiversity
- Functional traits responses $(\mathbf{F}) \rightarrow a$ proxy for functional potential (toward resilience?)
- Which descriptor describe better the short-term effects of forestry treatments on ground beetles?

Methods •00 Results

Summary O

Methods

Study area¹

- 70 yr old *Quercus petraea*, *Carpinus betulus* stand
- 5 treatments in 6 replicates:
- control (C)
- preparation cutting (P)
- gap cutting (G)
- micro-clearcut (CC)
- retention tree group (\mathbf{R})

Methods 000 Results

Summary O

Sampling

Sampling design

- Treatments were implemented in winter, 2014
- 2014 \rightarrow baseline study before treatments
- $2016 \rightarrow \text{short term response check}$

- Beetles were sampled by pitfall traps, one month in spring and autumn
- 4 pitfall traps/treatment/replicates \rightarrow 120 pitfall traps
- Mark-recapture of *Carabus scheidleri* in **CC**, **G**, **P** in block no. 1 and 2.

Methods 00● Results

Summary O

Analyses

Taxonomical approach²

- Non-metric Multidimensional Scaling community composition
- Species richness, activity density(abundance)
- Alpha diversity Rényi diversity ordering

Functional approach

- Species richness, activity density for habitat affinity, body size classes and wing type
- Functional diversity Rao's Q, no. of singular species
- Species level responses C. scheidleri (MRR)

TesteR - non-linear mixed effect models: nlme, multcomp

• model1=lme(sqrt(response) treatment,random= 1|block, method="ML"); comp.F<- glht(model1,linfct = K); alpha=0.05

Methods 000 Results

Summary O

Community composition

R²=0.35, F=3.48, p=<0.0001

• Slight differences, C and R form a group (stress=0.21)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Methods 000 Results

Summary O

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Species richness/activity density

Treatments

• More species in **R**, abundance unaffected

Methods 000 Results

Summary O

Alpha diversity

2016

• **R** more diverse than other treatments

◆□ → ◆□ → ▲目 → ▲目 → ▲□ → ◆□ →

Methods 000 Results

Summary O

Functional trait responses

- Large, forest specialist in \mathbf{C}
- Small sized, good dispersers, open-habitat species in R, CC, (G)
- Generalists and poor dispersers occurred all treatment \rightarrow $\leftarrow = \rightarrow$

estions	Methods 000		Results 0000●0	
	_			

- Singular and (taxonomic) species richness are identical in all treatment → all species are functionally different
- High functional diversity in \mathbf{CC} and $\mathbf{R} \to \text{trait}$ divergence

イロト イタト イヨト イヨト 三日

Questions	Methods	Results	
		000000	

+1 behavioural responses - MRR C. scheidleri

- High movement fidelity in control forest stands (*.c)
- Decreasing activity in treatments from $\mathbf{CC} \to \mathbf{G} \to \mathbf{P}$

Summary and Conclusions³

Summary

- Functional traits seems more appropriate than taxonomical approaches
- The high species richness and alpha diversity in $\mathbf{R} \rightarrow \text{dominance}$ of small sized species, good dispersers and open-habitat species
- The more drastic forestry treatments, the higher divergence in functional traits of ground beetles

Conclusions

- Mobility and the resilince is the key for survival in managed forests
- The high trait divergence in $\mathbf{CC}, \mathbf{R} \rightarrow \text{high resilience against}$ stochastic environmental influences

³Acknowledgements: Hungarian Research Found (OTKA 111887), National Research Development and Innovation Office (GINOP-2.3.2-15-2016-00019), $IAT_EX 2_{\varepsilon}$ and Beamer package ション ふゆ くちゃくちゃ しゅうろく