SCCS Hungary 2016, Tihany

The effect of management on forest microclimate: observational and experimental approaches

Bence KOVÁCS^{1,2}, Flóra TINYA¹, Péter ÓDOR¹

¹ MTA Centre for Ecological Research, Institute of Ecology and Botany ² Eötvös Loránd University, Department of Plant Taxonomy, Ecology and Theoretical Biology

Introduction

- Why is microclimate important in forests?
 - dispersal, persitence of forest-dwelling species
 - broader context: effect on regional changes e.g. ameliorating the effects of climate change
- Forest stands create special below-canopy climate -> buffered extremes, ... stable environment
- Forest management practices can alter the microclimate through changes in canopy closure and stand structure

Observational study in Őrség NP

To what extent are the microclimate variables correlated? Which stand structure and landscape variables affect forest microclimate?

- 35 mature, managed mixed forest stands
- stratified random sampling -> different combinations of the dominant tree species (Ø distinct groups by tree sp.)

- air temperature and relative humidity -> 24-hr logging periods; relative values (reference loggers); 8 measurement periods
- relative diffuse light -> LAI-2000 analyser (*Flóra Tinya*)

Correlation analyses

- T and RH was consistently correlated (-)
- light was independent

 $R = -0.89^{***}$

Generalization of microclimate variables

Potential explanatory variables

- Tree species composition
- Stand structure: Diameter classes Large trees Shrub layer Deadwood Herb layer and bryophytes (*cover*)
- Litter (cover and compounds)
- Landscape variables (r=300 m)

Linear models: "microclimate" + light

Explanatory variables	Estimate sign	Variance %
PC 1 ~ "Warm and less humid microclimate"	R ² =0.61, F(4,30)=14.3, p<0.001	
Relative volume of hornbeam	-	33.31
Density of shrubs and trees (0-5 cm DBH)	-	14.05
Proportion of deciduous stands in the landscape	+	11.62
Relative volume of oak species	+	6.62
PC 2 ~ "Higher daily microclimate range"	R ² =0.22, F(3,31)=4.19, p=0.013	
Cover of total litter	-	11.09
Proportion of forests in the landscape	-	9.74
Shannon-diversity of DBH categories	-	8.02
Mean of relative diffuse light	R ² =0.65, F(3,31)=21.64, p<0.001	
Total basal area of mapped trees	-	37.06
Shannon-diversity of DBH categories	-	19.67
Relative volume of oak species	+	10.95
CV of relative diffuse light	R ² =0.49, F(3,31)=11.94, p<0.001	
Average DBH	-	35.56
Total basal area of mapped trees	-	13.48
Relative volume of beech	-	4.56

Experimental study in Pilis Mts.

How do forestry treatments affect microclimatic variables?

- ~40-ha homogeneous stand
- 2-layered oak-hornbeam forest
 - Quercus petraea: 21 m
 - Carpinus betulus: 10.5 m
- average stand age: 70 yrs

Experimental design

• 5 treatments

preparation cutting (d=80 m) gap cutting (d=20 m) micro-clearcut (d=80 m) retention tree group (d=20 m) control

- 6 replicates
- complete block design
- fenced plots (6×6 m)
- BACI (Before-After-Control-Impact) all measurements started in 2014
- double control (temporal and spatial)

Microclimate measurements

- 72-hr measrements/month
- systematic data collection synchronized data loggers
- in the center of the treatments: 5 variables are measured + VPD is calculated
- for analysis: 24-hr datasets
- + additional measurements: DIFN, densiometer, TDR (SWC variability)

Preliminary results

Preliminary results

Air temperature Air humidity 0 27.5 Relative humidity (%) 64 Temperature (°C) 27.0 0 62 26.5 60 29 26.0 0 ō. Gap Pc Rtg Ctrl Cc Pc Rtg Ctrl Gap Сс **Treatments Treatments**

Preliminary results

Conclusions

- Well-developed shrub-layer and subcanopy are important for maintaining humid and cool microclimate
- Tree size diversity and basal area are key factors of diffuse light in closed forests

- Short response (2014->2015), preliminary results
- Forestry treatments alter microclimate variables, e.g.:
 - *in gaps:* soil moisture and light increased
 - *in clearcuts*: extremes are more frequent, temperature increased
 - *in retantion tree groups*: the buffering capacity seems to be lower than expected

Thank you for your kind attention!

Acknowledgement:

HUNGARIAN SCIENTIFIC RESEARCH FUND

The studies were supported by OTKA K79158 and OTKA K111887, Őrség National Park Directorate, Pilisi Parkerdő Ltd., GINOP 2.3.3-15-2016-00019.