5th Forum Carpaticum Conference, 15th - 18th of October 2018, Eger, Hungary

Session: Effects of forest managements on biodiversity Session leader: Péter Ódor (MTA Centre for Ecological Research, Hungary)

Forest Managem	ent \longrightarrow	Stand structure	\rightarrow	Forest site	\longrightarrow	Biodiversity
Natural disturba	nces			t		t

- Conservational and timber production purposes can not be always separated
- Exploration of these relationships are necessery for ecologically sustainable silviculture

5th Forum Carpaticum Conference, 15th - 18th of October 2018, Eger, Hungary

Session: Effects of forest managements on biodiversity

Person	Target group	Effect	Locality
Péter Ódor	multi-taxon	different forestry treatments	oak forests
Thomas Langbehn	lichens	natural disturbances	spruce forests
Ondrej Kosulic	spiders	coppicing	oak forests
Ondrej Kameniar	birds	natural disturbances	spruce forests
Anatoliy Smaliychuk			Ukraine, old-growth forests
Ondrej Kosulic	spiders	ash dieback	floodplain forests
Daniel Kozak	saproxylic beetles	natural disturbances	spruce forests

Effects of forestry treatments on forest site, biodiversity and regeneration

Péter Ódor^{1,2}, Réka Aszalós¹, András Bidló³, Gergely Boros^{4,2}, Zoltán Elek⁵, Bence Kovács^{1,2}, Ferenc Samu⁶, Vivien Sass³, Flóra Tinya¹, Bence Tóth⁷, Ákos Vadas⁷

¹MTA Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
²MTA Centre for Ecological Research, GINOP Sustainable Ecosystem Group, Tihany, Hungary
³Institute of Environmental and Earth Sciences, University of Sopron, Sopron, Hungary
⁴Szent István University, Department of Zoology and Animal Ecology, Gödöllő, Hungary
⁵MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
⁶MTA Centre for Agricultural Research, Agricultural Institute, Budapest, Hungary
⁷Faculty of Science, Eötvös University, Budapest, Hungary

5th Forum Carpaticum Conference, 15th - 18th of October 2018, Eger, Hungary

Motivation

Necessity of the harmonization between timber production and conservation purposes

- Forest cover in Hungary: ~20%
 - Managed forests: 96%
 - Protected (management restrictions): 21%

Applied silvicultural systems:

- Rotation forestry, shelterwood system (natural regeneration) → native submontane forests
- Rotation forestry, clear-cutting system (artificial regeneration) → lowland forests and plantations
- Continuous cover forestry, selection system → new!, ~4%, more open stands with continuous forest cover

Important to study the relationships between forest management and biodiversity

Pilis Project (2014-), forestry experiment

Experimental design

- 75 yr old Quercus petraea Carpinus betulus stand
- 5 treatments:
 - preparation cutting (d=80 m)
 - gap cutting (d=20 m)
 - clear-cutting (d=80 m)
 - retention tree group (d=20 m)
 - control
- 6 replicates complete block design
- BACI (Before-After-Control-Impact): all measurements started in 2014
- Data analysis in 2016-2017 (2-3 years after the treatments)

Relative Diffuse Light (2016)

F=55.843***

Microclimate

Species richness difference (2016-2014)

Abundance difference (2016-2014)

Species composition 2016 (NMDS)

Planted saplings – Height growth between 2014-2017 (cm)

Conclusions for management

- Gaps provide favorable light conditions for regeneration, temperate microclimate, increased soil water content
- Preparation cutting has the most similar conditions to control
- Clear-cutting has drastic effects on organism groups
- Retention tree group can compensate light effect and temperature range increment, but it can not compensate the increased temperature
- Sessile soil organisms are very sensitive to microclimatic changes resulted by forest management; for plant communities it is buffered by the survival of the perennials; for spiders and ground beetles by the mobility of individuals
- Continuous forest cover forestry is more favorable for conservation purposes than rotation (shelterwood) forestry system

Thank you for your attention!

The project is supported by the Hungarian Science Foundation (OTKA 111887), National Research Development and Innovation Office (GINOP-2.3.2-15-2016-00019, PD123811) and the Hungarian Academy of Sciences

